

16604

120 MINUTES

1.	Which A) C)	one of the followard Be > B > C > Be < B < C <	> N > F		s the co B) D)	Be < 1	der of variation B > C < N < F B > C < N < F		nic size?
2.	The "s A)	styx" number of 4202	f B ₆ H ₁₀ B)	is 2402		C)	4220	D)	4620
3.	Layer A) C)	polymeric silica Si ₃ O ₉ ⁶⁻ [Si ₄ O ₁₁] _n ⁶ⁿ⁻	ates hav	e the fo	ormula B) D)	[Si ₄ O ₁ Si ₆ O ₁₈	0]n ⁴ⁿ⁻ 12-		
4.	Which A)	among the foll XeF ₄	owing B)	has squ XeO ₄	are pyra	midal s C)	structure? XeO ₃ F ₂	D)	XeOF ₄
5.	The co Ni is A) B) C) D)	Sc(OH) ₂ < Mn Sc(OH) ₂ < Mn Sc(OH) ₂ < Mn Mn(OH) ₂ < Fe	(OH) ₂ < (OH) ₂ < (OH) ₂ <	Fe(OH	I) ₃ <fe((I)₂<fe((I)₂<ni((< td=""><td>OH)₂< N OH)₃< N OH)₂< F</td><td>Ni(OH)₂ Ni(OH)₂ Fe(OH)₃</td><td>es of Sc,</td><td>Mn, Fe,</td></ni((<></fe((</fe((OH) ₂ < N OH) ₃ < N OH) ₂ < F	Ni(OH) ₂ Ni(OH) ₂ Fe(OH) ₃	es of Sc,	Mn, Fe,
6.		a among the followers: Cometallates? V, Cr, Mo &V Ti, Cr, Mo &	V	transitio	B) D)		r, Mo, W & Zr		orm
7.	Misch A) C)	metal is a mixtu Ce, Pr, La & F Ce, Pr, La & N	Eu		B) D)		,Lu & Nd , Nd & Lu		
8.	The in A) C)	tense yellow co MLCT f-f transition	olour of	uranyl	ion (UC B) D)	LMCT		to	
9.	The nuis A)	umber of isome	rs possi B)	ble for	the squa	are plan C)	ar complex [Pt	BrCl(N	H ₃)(PH ₃)]
10.	The sp	oin only magnet respectively Both 1.73 1.73 & 3.83			BM of B) D)	,	6] and [Co(NH	,	

11.	The products X & Y formed in the following reactions are $[PtCl_4]^{2^-} + 2NH_3 \longrightarrow X$ $[Pt(NH_3)_4]^{2^+} + 2Cl^- \longrightarrow Y$								
	A) Both X& Y = cis-[PtCl ₂ (NH ₃) ₂] B) Both X& Y = trans-[PtCl ₂ (NH ₃) ₂] C) X= cis-[PtCl ₂ (NH ₃) ₂] & Y= trans-[PtCl ₂ (NH ₃) ₂] D) X= trans-[PtCl ₂ (NH ₃) ₂] & Y= cis-[PtCl ₂ (NH ₃) ₂]								
12.	The mechanism followed in the following reaction is								
	$[W(CO)_6] + PPh_3 \longrightarrow [W(CO)_5(PPh_3)] + CO$								
	 A) Associative mechanism B) Dissociative mechanism C) Outer- sphere mechanism D) Inner- sphere mechanism 								
13.	Which among the following complexes does not obey the 18 electron rule? (i) $[Fe(\eta_5^5-Cp)_2]$, (ii) $[Cr(\eta_5^5-Cp)_2]$, (iii) $[Cr(CO)_6]$, (iv) $[V(\eta_5^5-Cp)_2]$								
	A) i, ii & iv only B) i, iii & iv only C) i & iii only D) ii & iv only								
14.	Which of the following has a nido structure? A) Ir ₄ (CO) ₁₂ B) Fe ₄ (CO) ₁₅ C) Os ₅ (CO) ₁₆ D) Rh ₆ (CO) ₁₆								
15.	The hapticity of cyclopentadienyl is/are A) 1 B) 3 C) 5 D) 1, 3 and 5								
16.	Match the following catalysts with the correct processes								
	Catalyst Process								

	Catalyst		Process
(i)	Grubb's catalyst	(a)	Hydrogenation of alkenes
(ii)	Zeigler Natta catalyst	(b)	Hydroformylation
(iii)	Wilkinson's catalyst	(c)	Polymerisation
(iv)	Co ₂ (CO) ₈	(d)	Alkene metathesis

A) (i)
$$-b$$
, (ii) $-c$, (iii) $-d$ (iv) $-a$

B) (i)
$$-d$$
, (ii) $-c$, (iii) $-a$ (iv) $-b$

C) (i)
$$-a$$
, (ii) $-c$, (iii) $-d$ (iv) $-b$

17.	Which of the following	metal ions has a	high concentration in	n cytoplasm?
			8	J I

- A) K^{+}
- B) Na[†]
- C) Ca^{2+}
- $\mathrm{Fe}^{2^{+}}$ D)

18. Small polydentate ligands that have a high affinity for Fe (III) is known as

- Apocalmodulin
- Ferritin B)
- C) Siderophores
- D) Carboxypeptidase

19. A small iron-sulphur protein found in various sulphur-metabolizing bacteria is

Ferridoxin

B) Cytochrome

C) Rubredoxin D) Haemerythrin

- Anti cancer drug
- B) Anti- arthritis drug D)
- C) Anti malarial drug
- Anti-histamine drug

A)
$$C_6H_5^+ < p\text{-ClC}_6H_4\text{-CH}_2^+ < C_6H_5CH_2^+$$
B) $C_6H_5^+ < C_6H_5CH_2^+ < p\text{-ClC}_6H_4\text{-CH}_2^+$
C) $C_6H_5CH_2^+ < C_6H_5^+ < p\text{-ClC}_6H_4\text{-CH}_2^+$
D) $p\text{-ClC}_6H_4\text{-CH}_2^+ < C_6H_5^+ < C_6H_5CH_2^+$

C)
$$C_6H_5CH_2^+ < C_6H_5^+ < p-ClC_6H_4-CH_2^+$$

D)
$$p-ClC_6H_4-CH_2^+ < C_6H_5^+ < C_6H_5CH_2^+$$

- 22. Arrange the following in the increasing order of reactivity in S_N2 solvolysis.
 - (a) CH₃-CH₂-CH₂-Br
- (b) CH₃-O-CH₂-Br
- (c) C_6H_5Br

A) a < b < c

b < a < cB)

c < b < aC)

D) c < a < b

23. Which among the following is/are antiaromatic?

- A) (i) & (ii) only
- B) (ii) & (iii) only
- C) (iv) only
- D) (ii) only

24. The intermediate X and the product Y formed in the following reaction is

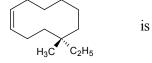
- A) X is carbocation and Y is
- B) X is carbanion and Y is
- C) X is benzyne and Y is
- D) X is nitrene and Y is
- 25. The best reagent for the conversion of $H_{3C} CH_{3} \longrightarrow H_{3C} CH_{3} CH_{3}$
 - A) NaIO₄ B) Pb(OAc)₄ C) SeO₂ D) KMnO₄
- 26. The major product of the following reaction is

$$CH_3$$
 CH_3
 CH_3

27. Match the following reagents with the correct reaction

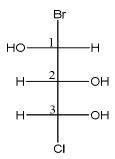
a)	Zn(Hg)/HCl	i) Shapiro reaction
b)	H ₂ N-NH ₂ , KOH	ii) Clemmensen reduction
c)	Tosyl hydrazone, RLi	iii) Birch reduction
d)	Li/NH ₃	iv) WK reduction
<u> </u>	o ji bi o jiy diji 🗀 🖺) a ji b jiy a i d jij

- A) a- ii, b-i, c-iv, d-iii
- 3) a- ii, b-iv, c-i, d-iii
- C) a- ii, b-i, c-iii, d-iv
- D) a- iii, b-i, c-iv, d-ii


28. The major product of the following reaction is

EtO₂C(CH₂)₄CO₂Et
$$\frac{1. \text{NaOEt}}{2. \text{MeI}}$$

$$CO_2Et$$
 H_3C CO_2Et $B)$


$$C)$$
 CH_3 CO_2Et CO_2Et

29. The IUPAC name of the compound

- A) (1E, 5R) 5-ethyl-5-methylclodec-1-ene
- B) (1Z, 5S) 5-ethyl-5-methylclodec-1-ene
- C) (1E, 5S) 5-ethyl-5-methylclodec-1-ene
- D) (4E, 1S) 1-ethyl-1-methylcyclodec-4-ene

30. The R and S nomenclature of the following compound is

- A) 1- R, 2- R, 3-S
- B) 1-S, 2-S, 3-R
- C) 1- S, 2- R, 3-S
- D) 1-R, 2-S, 3-R

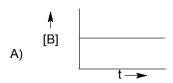
31. The most stable conformation of the following compound is

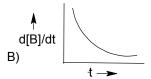
- A) Chair with OH equatorial, Me & iPr axial
- B) Boat with Me & iPr boat equatorial & OH at bowsprit
- C) Chair with iPr and OH equatorial & Me axial
- D) Chair with Me & OH equatorial, iPr axial
- 32. Which among the following is correct regarding the reaction

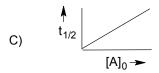
- It is a stereo specific reaction A)
- It is an enatio specific reaction B)
- C) It is a regeo selective reaction
- D) It is a diastereoselective reaction
- 33. The following pericyclic reaction is

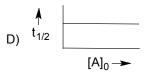
- A)
- B)
- Thermal π^{8s} disrotatory reaction Thermal π^{8a} conrotatory reaction Photochemical π^{8a} conrotatory reaction C)
- Photochemical π^{8_s} disrotatory reaction D)

34. The major product of the following reaction is


- B) Ph Ph Ph CO₂Et
- $\begin{array}{c} Ph \\ Ph \\ Ph \\ N \\ Ph \\ CO_2Et \end{array}$
- Ph Ph Ph Ph EtO₂C CO₂Et
- 35. Which is /are the correct statements about the following reaction?


- (i) It is a [3,3] sigmatropic rearrangement
- (ii) It is an example of Claisen-Cope rearrangement
- (iii) It is an example of Cope rearrangement
- A) (i) & (iii) only
- B) (i) & (ii) only
- C) (ii) & (iii) only
- D) All the three
- 36. The following photochemical reaction is an example of


- A) Norrish type I reaction
- B) Norrish type II reaction
- C) Paterno-Buchi reaction
- D) Barton reaction
- 37. Camphor $(C_{10}H_{16}O)$ is an example of
 - A) Monoterpenoid
- B) Diterpenoid
- C) Sesquiterpenoid
- D) Triterpenoid


38.		h of the followi D- Glucose		nosachharides D- Mannose	-	same osazone D- Ribose		D- Fructose
	A) C)	Only I & II Only I, II & I	V	B) D)		I,II & III ne four		
39.	A vita A) C)	amin which exist Vitamin A Vitamin C	sts as a	n ene-diol is B) D)		nin B ₂ nin K		
40.		peptide present sing agents is Aspartame Ala-Val-Leu	in almo	est all tissues of B) D)	Gluta	things which inthionine Met-His	removes (dangerous
41.		tal crystallises a nsion of the cub 100 pm			ic radius	s is 141.4 pm. 326 pm	The unit D)	cell 400 pm
42.	An ex A) C)	xample of a sup NaCl Na _{1+x} Zr ₂ P _{3-x} S		e conductor is B) D)	YBa ₂	Cu ₃ O ₇		
43.		emperature at v ity of helium at 1200K			y of me	thane gas is e	qual to th	e RMS 75K
44.	Which A) B) C) D)	temperature Viscosity of a	a gas is a gas is a gas is	g is/ are correct proportional to independent o inversely prop	the squ f pressu	uare root of th	e absolut	e
45.		ree energy char eal gas from a v 573.4 kJ						
46.	The c A) C)	ondition for eq $(\partial G)_{P,V} = 0$ $(\partial G)_{P,T} = 0$		B)		$0_{S,V} = 0$ $0_{T,V} = 0$		
47.		rding to the sec		•	ynamics	, which of the	e followi	ng quantity
	A)	q_{rev}	B)	T /q _{rev}	C)	q _{rev} /T	D)	W _{rev}

- 48. According to molecular partition function, Helmholtz free energy (A) is given by
 - A) $kT^2 \left(\frac{\partial lnQ}{\partial T}\right)_{V.N}$
- B) $kT\left(\frac{\partial lnQ}{\partial V}\right)_{T.N}$
- C) $A(0) kT \ln Q$
- D) $A(0)+kT\ln Q$
- 49. For the reaction $2A + B \rightarrow C + 2D$ which is first order in A and also first order in B, the overall rate is given by
 - A) $k[A]^2[B]$
- B) $k[A][B]^2$
- C) $k[A]^2$
- $D) \qquad k[A][B]$
- 50. Which graph represents correctly for the zero order reaction $A(g) \longrightarrow B(g)$

- 51. The expression for the rate constant according to the Absolute reaction rate theory is
 - A) $k = \frac{kT}{h} e^{\Delta S^*/R} e^{\Delta H^*/RT}$
- B) $k = \frac{kT}{h} e^{\Delta S^*/R} e^{-\Delta H^*/RT}$
- C) $k = \frac{kT}{h} e^{-\Delta S^*/R} e^{\Delta H^*/RT}$
- D) $k = \frac{kT}{h} e^{\Delta S^*/R} e^{-E^*/RT}$
- 52. For a consecutive elementary first order reaction

$$A \xrightarrow{k_a} B \xrightarrow{k_b} C$$

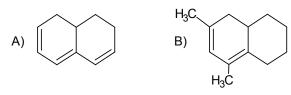
Under steady state approximation the concentration of the product [C] is given by

- A) $(1 e^{-k_a t})[A]_0$
- B) $(1 e^{-k_b t})[A]_0$
- C) $(1 + e^{-k_a t})[A]_0$
- D) $(1 + e^{-k_b t})[A]_0$
- 53. The mean ionic activity of 'm' molal solution of $Ca_3(PO_4)_2$ is given by (γ_{\pm} is the mean ionic activity coefficient)
 - A) $a_{\pm} = 108m\gamma_{\pm}$
- B) $a_{\pm} = 12m\gamma_{\pm}$
- C) $a_{\pm} = \sqrt[5]{108} \ m\gamma_{\pm}$
- $D) a_{\pm} = \sqrt[5]{108m\gamma_{\pm}}$

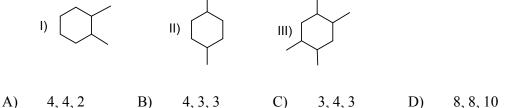
- 54. $\Lambda^0_{\text{NH4Cl}} = 130\Omega^{-1} \text{ cm}^2 \text{ mol}^{-1}, \ \Lambda^0_{\text{KOH}} = 220\Omega^{-1} \text{ cm}^2 \text{ mol}^{-1}, \ \Lambda^0_{\text{KCl}} = 110\Omega^{-1} \text{ cm}^2 \text{ mol}^{-1}$ If Λ_{m} of NH₄OH at a given concentration is 12.0 Ω^{-1} cm² mol⁻¹, what is its degree of dissociation?
 - A) 2%
- B) 3%
- C) 20%
- D) 5%
- 55. The relationship between temperature coefficient of e.m.f. of a cell and standard entropy change of the cell reaction is given by
 - A) $\Delta S^{\circ} = nF \left(\frac{\partial E}{\partial T} \right)_{p}$
- B) $\Delta S^{\circ} = -nF \left(\frac{\partial E}{\partial T} \right)_{p}$
- C) $\Delta S^{\circ} = -F \left(\frac{\partial E}{\partial T} \right)_{p}$
- D) $\Delta S^{\circ} = nFE^{\circ} nF\left(\frac{\partial E}{\partial T}\right)_{p}$

- 56. Tafel plot is
 - A) Plot of current density against electrode potential
 - B) Plot of current density against over potential
 - C) Plot of logarithm of current density against over potential
 - D) Plot of logarithm of current density against electrode potential
- 57. Match the following

Colun	nn I	Column II				
(i)	Freundlich isotherm	a)	$\frac{z}{(1-z)V} = \frac{1}{cV_{mon}} + \frac{(c-1)z}{cV_{mon}}$			
(ii)	Langmuir isotherm	b)	$\theta = c_1 p^{1/c_2}$			
(iii)	BET isotherm	c)	$\theta = \frac{Kp}{1+Kp}$			

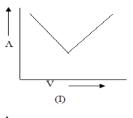

D)

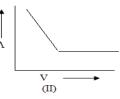
- A) (i) a, (ii) c, (iii) b
- B) (i) b, (ii) c, (iii) a
- C) (i) c, (ii) b, (iii) a
- (i) c, (ii) a, (iii) b
- 58. ESCA is usually used to study
 - A) Reactions occurring at the bulk of the material
 - B) Surface state of heterogeneous catalysts
 - C) Electronic structure of molecules
 - D) Homogeneous catalysis
- 59. The colour of lyophobic colloids is due to
 - A) Electronic transition in colloidal particles
 - B) Vibrational transition in colloidal particles
 - C) Scattering of light by colloidal particles
 - D) Electronic & vibrational transition
- 60. Oxidation of propene to acrolein by bismuth molybdate is best explained by
 - A) Langmuir- Hinshelwood mechanism
 - B) Eley Rideal mechanism
 - C) Mars van Krevelen mechanism
 - D) None of the above

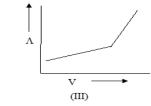

61.	Whic	h of the followi	ng is no	ot a linea	ar opera	itor?			
	A)	$\frac{d^2}{dx^2}$	B)	$\sqrt{}$		C)	$\widehat{P}_{\!\scriptscriptstyle \mathcal{X}}$	D)	\widehat{H}
62.		robability that a			found in	n betwe	en 0 and a/2 in	a one	
	A)	$\frac{1}{2}$	B)	_		C)	$\frac{1}{4}$	D)	$\frac{3}{4}$
63.	The a	ngular moment	um of a	ın electro	on in th	e f-orbi	tal is		
		$\sqrt{2} \frac{h}{2\pi}$						D)	$\sqrt{12} \frac{h}{2\pi}$
64.	The gi	round state term	symbol	of Mn ²⁺ i	is				
	A)	^{3}F	B)	^{2}D		C)	^{2}S	D)	⁶ S
65.		rding to the Bor on may be negle		enheime	r appro	ximatio	n, which of the	follow	ing relative
	A) C)	Electron to make Nucleus to no			B) D)		on to electron the above		
66.		ydrogen moleci			d state	$\sigma_g^l \sigma_u^l$,	the spin part of	the trip	let state
	with i	$m_s = 0$ is propor $\alpha(1)\beta(2)$	rtional t	0	B)	α(1)β	$(2) + \beta(1)\alpha(2)$		
	C)	$\alpha(1)\alpha(2)$			D)	α(1)β	$(2) - \beta(1)\alpha(2)$		
67.	The to	erm symbol of	a molec	ule with	the ele	ectronic	configuration		
	$(1\sigma_g)$	$(2\sigma_{\rm u})^2 (2\sigma_{\rm g})^2 (2\sigma_{\rm g})^2$	$(2\sigma_{\rm u})^2$	$(\pi_u)^2(1 \pi$	$(u)^2(3\sigma_g)$) ¹ is			
	A)	$^{1}\sum_{g}^{+}$	B)	$^3\sum_g^+$		C)	$^2\sum_g$ -	D)	$^2\sum_g^+$
68.		rding to Huckel							
	by α : A)	$\pm 1.62\beta$ and α 0.62 β	χ ± 0.6. Β)	2β . The 0.48β	e deloca	C)	1.62β	D)	3 1.48β
69.	The p A)	oint group of e D _{3h}	clipsed B)	ethane i C _{3v}	S	C)	D_{3d}	D)	D_3
70.	$5\sigma_v$.	nt group has the order and the							
	respec A)	etively 8, 8	B)	20, 20)	C)	20, 8	D)	10, 8
71.	$C_6^3 \times$	σ_h is equivalen	it to						
	A)	σ_h	B)	C_3		C)	σ_v	D)	i

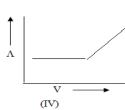
72.	Which	of the follow	vino is a well	-hehave	ed function? (x lies between plus and
72.	vv inten	minus infinity	•	ochave	talletion: (A lies between plus und
	A)	$y = \exp(a x^2)$		B)	y = a x + b
	C)	$y = a x^2$		D)	$y = \exp(-a x^2)$
73.	Match	the following			
	I II III IV V	$\begin{array}{c} CH_4 \\ H_2O \\ CO_2 \\ CH_3Cl \\ C_2H_5OH \end{array}$	a. Asymmetrical to c. Symmetrica d. Linear	р	
	A) B) C) D)	I- a, II- c, III- I- b, II- a, III- I- b, II- a, III- I- c, II- a, III-	d, IV- c, V- b d, IV- c, V- a		
74.					Floccurs at 2885.64 cm ⁻¹ and 5667.18 cm ⁻¹ requency ($\bar{\nu}$) of the molecule is 2937.69 cm ⁻¹ 2989.74 cm ⁻¹
75.	UV		with $\varepsilon_{\text{max}} = 20$ (b) $\sigma \rightarrow \sigma$ (b) $\sigma \rightarrow \sigma$ (b) $\tau \rightarrow \sigma$ (c) $\tau \rightarrow \tau$		owed the following absorptions in the 175 nm with ε_{max} =11000. Which among
76.		of the following N_2 , (ii) N_2^+ ,			
	A) C)	(ii),(iii) & (v) (i), (ii), (iii) &	•	B) D)	(i), (ii) & (iv) only All of these

77. A conjugated polyene showed a λ_{max} 272 nm in the UV region. The possible structure of the compound is


- C) D)
- 78. The numbers of proton decoupled ¹³CNMR signals shown by the following compounds are respectively




- 79. The order of C=O stretching frequency in aldehyde, acyl chloride and amide is
 - A) Amide > acyl chloride > aldehyde
 - B) Acyl chloride > aldehyde > Amide
 - C) Amide > aldehyde > acyl chloride
 - D) Acyl chloride > Amide > aldehyde
- 80. If Mossbauer spectrum of $Fe(CO)_5$ is recorded in the presence of a magnetic field, the original spectrum of two lines changes into one with
 - A) three lines
 B) four lines
 C) five lines
 D) six lines
- 81. The indicators that can be used to detect the equivalence points in the following two titrations (i) a strong acid and a weak base and (ii) a weak acid and a weak base are, respectively,
 - A) (i) Methyl orange and (ii) no suitable indicator
 - B) (i) no suitable indicator and (ii) Methyl orange
 - C) (i) Phenolphthalein and (ii) Methyl orange
 - D) (i) Diphenylamine and (ii) Ferroin


82.	To compare the precisions of data recorded in two different occasions we make use of										
	A)	Student t-test	B)	Paired t-test							
	C)	Chi-square-test	D)	F-test							
83.		tes, burettes and volumetric fla rent from those indicated by the Instrumental error				htly					
	C)	Personal error	D)	Random error							
0.4	,				0						
84.	Which among the following is/ are the reason for co-precipitation? (i) Occlusion (ii) Inclusion (iii) Adsorption										
	A)	(i) only	В)	(ii) & (iii) only							
	C)	(i) & (iii) only	D)	(i), (ii) & (iii)							
	C)	(i) & (iii) only	D)	(1), (11) & (111)							
85. The chromatographic method by which separation is effected by the different immiscible solvents is called											
	A)	Column chromatography	B)	Partition chromatogr	aphy						
	C)	Thin layer chromatography	D)	Gel permeation chro	matogr	aphy					
86.	respe the R	In a TLC if the compounds A and B have moved a distance of 5.5cm and 7cm respectively from the sample spot, the solvent front moved a distance of 10cm, then the R _f values of A and B are respectively A) 1.8 & 1.4 B) 1.4 & 1.8									
	/		/								
	C)	0.55 & 0.7	D)	0.7 & 0.55							
87.		h among the following is not a	carrier	_							
	A)	H_2 B) CO		C) He	D)	N_2					
88.	-	ration of Lanthanides is most e HPLC	ffected	by							
	A) B)	Electrophoresis									
	C)	Gel permeation Chromatogr	anhy								
	D)	Ion-exchange chromatograp									
89.	samp coeff	n a monochromatic beam of lig le solution in cell 1cm thick th icient of the substance is 2000 g2 = 0.3010)	e transr	nittance is 20%. The n	nolar ex	tinction					
	A)	$3.5 \times 10^{-3} \text{ mol L}^{-1}$	B)	$5 \times 10^{-3} \text{ mol L}^{-1}$							
	C)	$7 \times 10^{-3} \text{ mol L}^{-1}$	D)	$2 \times 10^{-3} \text{ mol L}^{-1}$							
90.	of the A)	he quantitative estimation of all e following analytical method i			ons (pp	m), which					
	B)	FES									
	C)	Turbidimetry									
	D)	Photoelectron spectroscopy									

- 91. Clarity of water can be determined by
 - A) Turbidimetry
- B) Nephelometry
- C) Flourimetry
- D) All the above
- 92. The information about the occupied MO energy levels of molecules can be determined by
 - UV-visible spectroscopy A)
 - B) IR spectroscopy
 - Photoelectron spectroscopy C)
 - D) Raman spectroscopy
- 93. Which among the following curves represent the conductometric titration of a weak acid against a strong base

- A)
- II B)
- C) III
- D) IV
- 94. When hydrogen electrode and normal calomel electrode are immersed in a solution at 25°C a potential of 0.664V is obtained. The pH of the solution is
 - $(2.303 \frac{RT}{F} = 0.059 \text{V}, \text{E}_{\text{calomel}} = 0.2802 \text{V})$
 - A) 6.5
- B) 5.5
- C) 7.5
- D) 4.5

- 95. Coulometric method of analysis is based on
 - Ohms law A)

I

- Nernst equation B)
- C) Faraday's law
- D) Ilkovic equation
- 96. The working electrode used in polarographic analysis is usually B)
 - Standard Calomel electrode A)
- Ag/AgCl electrode
- Hydrogen electrode C)
- Dropping mercury electrode D)
- 97. Exothermic and endothermic reactions can be easily identified by the thermograms
 - TG A)

DTG B)

C) DSC

Both B & C D)

98.	Of the following, which one is wrong with respect to radiometric titration?											
	A) Gives sharp and accurate end point.											
	B)	Weight and che			-	eagents	have no con	nsideration	1.			
	Ć)	Radiochemical				•						
	D)	Quantities requ			-	-	-					
	2)	Quantities requ)		ii are a	saarry siriarr	•				
99.	The S	I unit of radioact	ivity is	S								
	A)	becquerel	B)	curie		C)	rad	D)	rem			
100.		id scintillating co	ounter	conver				r emission	is to			
	A)	Heat energy				B) Light energy						
	C)	Electrical energ	gy		D)	Cnem	ical energy					
101.	Benze	nzene combines with oxygen in presence of V ₂ O ₅ according to the equation										
				Ö			· y •••••	,				
		+ 4.5 O ₂	ſſ	4	200 1	211.0						
		+ 4.5 O ₂ —	→ [\checkmark + $^{\prime}$	2 CO ₂ +	· 2 H ₂ O						
	·			ó'								
	TC /1	1 . 1 . 1		. 1	1 ' 1 .	1 4		C.1	,			
	If the	desired product i	is male	eic anny	dride, 1	the atom	n economy o	of the reac	tion is			
	A)	44.14%	B)	83 789	/o	C	35.13%	D)	52.18%			
	11)	77.17/0	D)	03.707	U	C)	33.1370	D)	32.1070			
102.	Which among the following is not true with respect to ionic liquids?											
	A)	They are organi										
	B)	They generally	consis	st of lar	ge N- c	ontainii	ng cation an	d a smalle	r inorganio			
		anion										
	C)	They are regard		_								
	D) They exist in super critical fluid state											
103.	Whiol	a amana tha falla	viin a	atatam a	nta ialo	ra trua f	for miorovyo	va aggigta	d araania			
103.	Which among the following statements is/are true for microwave assisted organic synthesis?											
	(i) It can be used for reactions involving heterogeneous metal catalysts(ii) It can be used for reactions in non-polar solvents											
	(iii) It can be used for reactions in non-polar solvents (iii) It increases the reaction rate more effectively than the rate of conventional											
	()	methods					<i>y</i>					
	A)	(i) & (ii) only			B)	(ii) &	(iii) only					
	C)	(iii) only			D)	(ii) on	ıly					
104	XX71 · 1	41 (2.11	•	. 1		C ,	1 40					
104.		n among the follo	_				uyst?					
	A)	Benzyltrimethy										
	B)	Pentadecyltribu		ospnon	iuiii SU.	рпасе						
	C) VanadiumpentoxideD) Invertase											
	D)	mvortuse										
105	Nanoi	materials are soli	d subs	tances v	vith the	dimens	sion					

B)

D)

10 nm to 1000 nm

0.1 nm to 1000 nm

A)

C)

0.01 nm to 10 nm

1 nm to 100 nm

106.	The co A) B) C) D)	Scattering o Localised su Electronic to None of the	f radiation orface Plas ansition	L	-		dielect	ric med	lium is 1	nainly du	e to
107.	The na A)	ano- crystals o ZnS	employed B)	for QD o Si	colour	produc C)	tion in CdSe	HD LE	D TV is D)	AlN	
108.	Botton A) B) C) D)	m-up fabricati Photolithog Electron bea Soft lithogra Solution me	raphy am lithogra aphy	aphy							
109.	Photo- A) B) C) D)	chemical smo Summer dur Summer duri Winter duri Winter duri	ring the moring the da	orning ti y time time							
110.		n among the foreffect?		gases in t		_	e are th			of green	
	A) C)	(i), (iii), (iv) (i), (iii), (v)			B) D)	(i), (ii) All), (iii), ((v) only	,		
111.	Acid r i. NO ₂	rain is caused ii. S		of the fo iii. CFC		g?					
	A) C)	i and iii only i only	Į.		B) D)	ii only i and i					
112.	During A) C)	g the Bhopal HCN Methyl isoc		I	as rele B) D)	Carbai			nere was		
113.	Which I) II) III)	II) They have amorphous regions									
	A) C)	(I) & (III) or (I) & (II) on			B) D)	(II) & All the	(III) or three	nly			
114.	Protec A)	etive clothing Nylon 66	of fire figl B)	nters are Kevlar	made	by the j	polyme Dacro		D)	Kodel	

- 115. Lexan the transparent polymer used to make bullet proof windows is made by the copolymerisation of
 - A) Phosgene and bisphenol A
 - B) Alkyl isocyanate and alcohol
 - C) Terephthalic acid and ethyleneglycol
 - D) Formaldehyde and melamine
- 116. Match the following

	Column I		Column II
(a)	A strongest adhesive	(i)	Polyacetylene
(b)	Conducting polymer	(ii)	Neoprene
(c)	Thermosetting polymer	(iii)	Epoxy resin
(d)	Synthetic rubber	(iv)	Melmac

- A) a- ii, b- i, c- iv, d- iii
- B) a- ii, b- iii, c- iv, d- i
- C) a- iii, b- i, c- iv, d- ii
- D) a- i, b- iv, c- ii, d- iii
- 117. Which among the following is not correct in designing an agonist drug?
 - A) The drug must have the correct binding groups
 - B) The drug must have these binding groups correctly positioned
 - C) The drug must be the right size for the binding site
 - D) The drug must alter the shape of the binding site
- 118. A drug that is antipyretic as well as analgesic
 - A) Quinine

B) p- acetamidophenol

C) Penicillin

- D) Chloramphenicol
- 119. Which among the following is not a sulpha drug?
 - A) Hydrochlorothiazide
- B) Sulphamethaxazole
- C) Chlorthalidone
- D) Diazepam
- 120. Which among the following is a sedative drug?
 - A) Phenobarbital
- B) Paracetamol

C) Ibuprofen

D) Oxamniquine
